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Abstract
The innate immune system is the first line of defense in response to nonself and danger signals from microbial
invasion or tissue injury. It is increasingly recognized that each organ uses unique sets of cells and molecules
that orchestrate regional innate immunity. The cells that execute the task of innate immunity aremany and consist
of not only “professional” immune cells but also nonimmune cells, such as renal epithelial cells. Despite a high
level of sophistication, deregulated innate immunity is common and contributes to a wide range of renal diseases,
such as sepsis-induced kidney injury, GN, and allograft dysfunction. This review discusses how the innate immune
system recognizes and responds to nonself and danger signals. In particular, the roles of renal epithelial cells
that make them an integral part of the innate immune apparatus of the kidney are highlighted.
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Introduction
The innate immune system is the first line of defense
against infection (nonself) or tissue injury (damaged
self). The cells and molecules of innate immunity are
rapidly activated by encounter with microbes or other
“danger signals.” The rapidity of the response is es-
sential because of the fast doubling time of typical
bacteria. The innate immune system was once per-
ceived as a crude stopgap until the adaptive immune
system activates. It is now understood that innate
immunity is a highly sophisticated sentinel system
vital to maintaining a healthy tissue microenvironment.
In fact, the innate immune system first appeared 750
million years ago and has been remarkably conserved
throughout the evolutionary tree of life. To put it into
perspective, the rodent and human lineage separated
from a common ancestor only 80 million years ago (1–3).

The components of the innate immune system are
many. They include soluble recognition molecules, such
as natural antibodies, pentraxins (e.g., C-reactive pro-
tein), and the complement system. Cellular components
of the innate immune system consist of phagocytic
cells (e.g., macrophages), antigen presenting cells (e.g.,
dendritic cells), and killing cells (e.g., natural killer
cells). In addition, subsets of T and B cells have lim-
ited antigen receptor diversity and also participate in
innate immunity (e.g., invariant natural killer T cells,
gd T cells, B-1 B cells). Finally, epithelial cells are an
integral component of innate immunity and function
as physical barriers, producers of cytokines and che-
mokines and have the ability to actually recognize
and process danger signals. Although epithelial cells
are generally viewed as unofficial members of the
professional immune system, they constitute the
vast majority of cells in a given organ, and, there-
fore, their relative contribution to immunity can be
substantial.

In this review, we first discuss how the innate im-
mune system recognizes and responds to danger sig-
nals in general. We then shift the focus to the kidney.
In particular, we highlight the roles of renal epithelial
cells as important trouble sensors and possibly trouble
makers. This epithelial cell–centric view, which is an
important concept in the danger model, was first pro-
posed by Polly Matzinger (4–6).

The danger model says that it is a tissue that controls
whetheryouturnonan immuneresponse,bysending
alarm signals. It is also a tissue that induces tolerance
byallowing itsantigens tobepresentedwithoutalarm
signals. Perhaps, therefore, it could also be the tissue
that determines the class of immunity.

How Cells Recognize and Respond to Danger
Signals
Bruce Beutler’s seminal discovery of the endotoxin

receptor, Toll-like receptor (TLR) 4 (TLR4), in 1998
revolutionized our understanding of innate immunity
(7). We now know that most mammalian species have
10–13 types of TLRs and that each receptor recognizes
specific ligands and induces a wide array of inflamma-
tory cascades (8) (Figure 1). TLRs are expressed most
heavily in myeloid-lineage cells but are also found in
other cell types, including renal epithelial cells (9–13).
We discuss the roles of TLRs in renal epithelial cells
later in this review.
Structurally, all TLRs are membrane-bound glyco-

proteins and have characteristic ligand-binding motifs
(leucine-rich repeats and cysteine-rich repeats) and cyto-
plasmic signaling domains (Toll/IL-1 receptor [TIR]
homology domains) (8). TIR domains are also found
in cytokines, such as IL-1 and IL-18, and therefore
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share similar signaling pathways leading to inflamma-
tion. Upon activation, TIR domains engage the adaptor
molecules myeloid differentiation primary response gene
88 (MyD88) or TIR domain–containing adapter-inducing
INF-b (TRIF). TLR3 signals exclusively through TRIF while
other TLRs signal primarily through MyD88. TLR4 is
unique in that it can activate both MyD88 and TRIF path-
ways (Figure 1). In addition to the membrane-bound TLRs,
many cytosolic receptors have also been discovered over
the past decade (14). The two major classes of the cyto-
plasmic receptors are Nucleotide-binding oligomerization
domain-like receptors (NOD-like receptors, NLR) and retinoic
acid-inducible gene-I-like receptors (RIG-like receptors, RLR).

In particular, the cytoplasmic signaling complexes, commonly
called inflammasomes, are under intense investigation (15–19).
These membrane-bound and cytosolic receptors are col-

lectively called pattern recognition receptors (PRRs) because
they recognize specific structural patterns. The specificity is
remarkable, reminiscent of adaptive immunity. However, the
specificity of innate immunity differs from that of adaptive
immunity in several aspects (Table 1) (2,20). The innate im-
mune system recognizes structures shared by classes of mi-
crobes, whereas adaptive immunity recognizes individual
details of microbes (antigens). The microbial structures rec-
ognized by innate immunity, called pathogen-associated
molecular patterns (PAMPs), are characteristic of microbes

Figure 1. | Location and signaling pathways of pattern recognition receptors. Toll-like receptors (TLRs) are membrane-bound glycoproteins
and consist of a functional homomer (e.g., TLR4) or heteromer (e.g., Toll/IL-1 receptor [TLR] 1:TLR2). TLRs have characteristic ligand-binding
motifs (leucine-rich repeats and cysteine-rich repeats) and cytoplasmic signaling domains (TIR homology domains). Note the differential localization
of TLRs. Upon activation of TLRs, the TIR domain engages the adaptor molecule MyD88, with the exception of TLR3, which exclusively signals
through TRIF. The TIR domain of TLR4 can engage both MyD88 and TRIF pathways. The coreceptor CD14 facilitates internalization of TLR4 and
subsequently activates TRIF signaling pathway. The best-characterized cytosolic receptor is the NLRP3 inflammasome complex. The mature
inflammasome activates caspase-1, which in turn generates IL-1b and IL-18. These cytokines induce various proinflammatory pathways, in-
cluding programmed inflammatory cell death (pyroptosis). CpG DNA, unmethylated cytosine-phosphate-guanine DNA; DAMPs, damage-
associated molecular patterns; dsRNA, double-stranded RNA; IRF, IFN regulatory factor; MAL, MyD88-adapter–like; MyD88, myeloid differentiation
primary response gene 88; NLRP3, NOD-like receptor family, pyrin-domain-containing 3; ssRNA, single-stranded RNA; TRAM, Toll-like receptor
4 adapter protein; TRIF, TIR domain–containing adapter-inducing INF-b.
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but not common to the host. For example, TLR9 recognizes
hypomethylated cytosine-guanine DNA sequences, which
are present in microbial genomes but are uncommon or
masked in mammals. In contrast, antigens recognized by
adaptive immunity may not be unique to microbes. Another
difference is that structures recognized by the innate im-
mune system are often essential for survival of the microbes
(e.g., LPS, the essential component of the Gram-negative bac-
terial cell wall). Conversely, antigens recognized by adaptive
immunity are not necessarily essential for survival. In fact,
certain pathogenic microbes can mutate antigens to evade
host adaptive immune defense without compromising their
own survival. Finally, because PRRs are encoded in the
germline (as opposed to somatic recombination in adaptive
immunity), the number of molecular patterns that the innate
immune system can recognize is limited. Nevertheless, it is
estimated that innate immunity can recognize up to 103 mo-
lecular patterns (the adaptive immune system is estimated to
recognize 107 or more antigens) (20,21).
One notable feature of pattern recognition receptors is

their strategic location in various cellular compartments,
allowing them to sense distinctive PAMPs and trigger spe-
cific downstream signaling cascades (22,23). For instance,
host nucleotides are not normally present in endosomes,
whereas microbial nucleotides can be found in endosomes
following phagocytosis. Therefore, endosomal distribution
of TLR3, 7, 8, and 9 (receptors of nucleotides) will allow the
host to respond to microbial nucleotides but not to host
nucleotides (Figure 1).
The fact that pattern recognition receptors recognize struc-

tures shared by broad classes of microbes poses a dilemma.
How does the host discern pathogenic microbes from non-
pathogenic microbes? This is not trivial; the number of
bacteria we host amounts to 1014, 10 times more than all the
human cells in one individual. Most of these bacteria are
harmless or even beneficial (commensals). However, they
are also equipped with the same microbial structures found

in pathogenic strains, such as LPS. How the innate immune
system distinguishes the good from the bad remains an
intense area of research as it relates to broad clinical prob-
lems, such as allergy and chronic inflammatory diseases.
Medzhitov, who cloned the human TLR4, figuratively de-
scribes it: “Detecting a person in a building does not nec-
essarily mean they are an intruder, since not all people are
intruders. But if someone comes into the building through
a window at night, then that might indicate the person is a
burglar” (24).
So, perhaps not surprisingly, PRRs expressed on senti-

nels such as macrophages can also recognize “damaged
self” and trigger inflammation. Typically, sentinels see
“damaged self” by sensing endogenous soluble molecules
that are confined within the cell under normal state but
are released after injury. The prototypes of the endogenous
molecules include extracellular ATP, high-mobility group
box protein 1, and heat shock protein, collectively called
damage-associated molecular patterns (DAMPs) (25).
DAMPs can induce strong inflammation and the net clin-
ical outcomes are often indistinguishable from those of
PAMP-induced inflammation. Indeed, sterile-tissue injury,
such as blunt trauma, results in a “genomic storm” that highly
resembles endotoxin-induced transcriptome changes (26).
DAMPs are also highly relevant in the settings of renal
ischemia-reperfusion and allograft injury (27). Of note, some
DAMPs do not directly bind to their PRRs. Instead, these
DAMPs are believed to induce small structural changes in
other molecules that activate the receptor and its down-
stream pathway (28).
Upon activation, PRRs can induce three major types of

responses: (1) phagocytosis, (2) inflammation, and (3) mat-
uration of antigen-presenting cells (e.g., macrophages and
dendritic cells), which leads to activation of the adaptive
immune system (Figure 2) (29). The cellular and molecular
details of these responses are extensively covered in general
immunology reviews (8,30–32). Notably, the maturation of

Table 1. Characteristics of innate and adaptive immunity

Innate Immunity Adaptive Immunity

Initial response (hours) Later response (days)
Recognizes microbial nonself, molecular patterns
unique and often essential to microbes (PAMPs)a

Antigen-specific response; recognizes individual molecular
details (6–30aminoacid residues)derived frommicrobesor self

Receptors are encoded in germline Receptors are generated by somatic recombination
Nonclonal Clonal expansion
No memory Memory
Limited diversity Large diversity
Cells: phagocytic cells (e.g., macrophages,
neutrophils), natural killer cells, antigen
presenting cells (e.g., dendritic cells), and epithelia
(physical barrier)

Cells: T, B lymphocytes

Components: TLR, NLR, RLR, scavenger receptor,
N-formyl methionyl receptor, C-type lectin-like
receptor (e.g., mannose receptor), soluble
recognition molecules (e.g., pentraxins,
complement, natural antibodies).

Components: TCR, BCR, antibodies

PAMPs, pathogen-associatedmolecular patterns; TLR, Toll-like receptor; NLR, NOD-like receptor; RLR, RIG-like receptor; TCR, T-cell
receptor; BCR, B-cell receptor.
aInnate immunity also recognizes damaged-self and allogeneic non-self. See text.
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antigen-presenting cells provides an important link between
the innate immunity and adaptive immunity. It is important
here to point out that PAMPs are not necessarily the final
antigen being presented by antigen-presenting cells. PAMPs
do activate their cognate PRRs and initiate phagocytosis, but
the final modified and presented antigen is likely another
constituent of the phagocytized microbe. The biology of an-
tigen capture and presentation has attracted and will con-
tinue to captivate scientists because it encompasses the most
fundamental question of immunology: self/nonself discrim-
ination (29).
Phagocytosis is a platform for activation of many PRRs

and often a prerequisite for activation of inflammatory signal-
ing cascades. For example, CD36, a scavenger receptor expressed
on phagocytic cells, recognizes microbial diacylglycerides and
prompts phagocytosis. This in turn leads to proinflamma-
tory responses. Ideally, the inflammatory responses should
confine infection and improve the host outcome.Unfortunately,
excessive inflammation often results in collateral tissue dam-
age. Indeed, it has been reported that the inhibition of CD36
reduces inflammation and even improves the survival rates
in an animal model of sepsis despite the impaired scavenging
function (33).
Clinically, the inflammatory cytokine storm results in

vasodilation, refractory hypotension, and ultimately death.
At the cellular tissue level, various degrees of oxidative
stress, cell cycle arrest, and damaged organelles (e.g., mi-
tochondria) can be observed in various organs, including
the kidney (34–38). To mitigate the cytokine storm, many
clinical trials have sought to block PRRs in patients with
severe infection. The most illustrative example is the inhi-
bition of TLR4. Eritoran, an inhibitor of TLR4, was thought
to be effective in reducing sepsis-induced mortality by
blocking inflammation. Contrary to expectations, multiple
clinical trials have failed to demonstrate positive outcomes
with TLR4 inhibition (39–41).

To some, the failure of TLR4 inhibition was not unex-
pected. It has long been known that TLR4 mutant mice are
resistant to endotoxin yet are highly susceptible to gram-
negative bacterial infection because they cannot sense or
react to actual bacterial invasion (7). This raises an impor-
tant clinical question: the balance between elimination of
microbes and minimizing inflammation. Could we find a
compromise whereby killing of microbes, although not
perfect, may involve minimal collateral tissue damage?
Emerging data suggest that it is possible for the host to
do so (42,43). The interested reader is referred to Jamieson
and colleagues’ recent article, which also points to the im-
portance of tissue repair capability (44).

How the Innate Immune System Senses Trouble and
Causes Trouble in the Kidney
Renal epithelial cells are surrounded by a dense network

of macrophages and dendritic cells, collectively called mo-
nonuclear phagocytes. These mononuclear phagocytes are
thought to play an important role in maintaining the in-
tegrity of tissue microenvironments. In fact, mononuclear
phagocytes are abundantly present even in early embry-
onic kidneys (45). Mononuclear phagocytes have markedly
diverse functions: from traditional phagocytic function
and inflammation to versatile, trophic roles. We do not go
into the details of renal mononuclear phagocytes because
this is covered by Kurts et al. in this CJASN Immunology
Series. Instead, here we focus on the often underappreciated
roles of renal epithelial cells in sensing danger signals.
Many PRRs, including TLRs, are expressed in renal epi-

thelial cells (46–54). The precise distribution of tubular TLRs
remains somewhat uncertain. This is in part due to the in-
herent complexity of the kidney architecture. One needs to
combine technically intricate microdissection, in situ hybrid-
ization, and immunostaining to adequately characterize TLR

Figure 2. | Innate immune responses encountered by microbes. Microbes are detected by pattern recognition receptors (PRRs) expressed in
innate immune cells, such as macrophages.The detection of microbes by the PRRs rapidly activates signaling cascades and generates in-
flammatory responses. Microbial encounter also leads to maturation of macrophages and dendritic cells into antigen presenting cells. PAMP,
pathogen-associated molecular pattern; TCR, T-cell receptor.
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expression and distribution among various renal cell popula-
tions. In this regard, immunostaining remains challenging be-
cause of lack of firm antibodies in this class. Moreover, TLRs
are such potent receptors that the expression levels are typi-
cally low at the levels of mRNA and protein. In monocytes, it
is estimated that TLR4 is present at 1300 molecules per cell,
whereas CD14, the coreceptor of TLR4, is expressed at 115,000
molecules (55). In nonmyeloid cells, TLR4 expression is likely
much lower. Nevertheless, because the total number of epithe-
lial cells far exceeds that of immune cells, tubular TLRs are an
important part of renal innate immunity. In support of this,
Wu et al. performed a classic experiment (56). They examined
the effect of renal ischemia-reperfusion injury in bone-marrow
chimeric mice between TLR4 knockout and wild-type animals.
Chimeric mice lacking intrinsic renal TLR4 had significantly
less tubular damage and azotemia than mice lacking hemato-
poietic TLR4, indicating that TLR4 in the kidney is instrumen-
tal in mediating tubular damage. Using a model of
endotoxemia, we also demonstrated that endotoxin-induced
tubular injury has an absolute requirement for tubular TLR4
(57). Conversely, TLR4-expressing hematopoietic cells were
not essential or sufficient to cause tubular toxicity. Zhang
et al. and Pulskens et al. also showed the importance of
intrinsic renal TLR4 after cisplatin nephrotoxicity and is-
chemic injury, respectively (58,59). Similarly, Leemans
et al. examined bone-marrow chimeric mice between
TLR2 knockout and wild-type mice and found that intrinsic
renal TLR2 has a central role in the unfolding of the injury
process (60). In summary, collective evidence strongly in-
dicates that epithelial TLRs contribute to tissue injury and
inflammation in response to danger signals.
In human kidney transplantation, Kruger et al. reported

differences in TLR4 expression in kidney tubules from

deceased versus live donors (61). The same authors also
identified loss-of-function single-nucleotide polymorphisms,
Asp299Gly and Thr399Ile, in TLR4 genotype in a large cohort
of donors (62,63). These kidneys with a TLR4 loss-of-function
allele had a higher rate of immediate graft function. Although
hematopoietic TLR4 likely contributed to inflammation to
some extent, this study highlights the significance of renal
tubular TLR4 in graft function. Detailed reviews on the role
of TLRs in renal allograft can be found elsewhere (64,65).
From a methodologic standpoint, a limitation of these

transplant and bone-marrow chimera approaches is that
results could be confounded by other nonimmune, non-
tubular cell types, such as endothelium. Therefore, studying
animals with cell type–specific gene manipulation may fur-
ther illuminate the roles of TLRs in each cell type. In this
regard, Deng et al. conducted an interesting study in the liver
in which they deleted TLR4 from hepatocytes or myeloid
cells. They found that hepatocyte TLR4 plays an important
role in clearing endotoxin and limiting sepsis-induced in-
flammation and organ injury (66).
Could renal epithelial TLR4 also be playing a role in en-

dotoxin clearance? Bacterial endotoxin can be filtered through
nephrons and taken up by the proximal tubules. Specifically,
we found that endotoxin undergoes TLR4-mediated endocy-
tosis in S1 tubular segments (Figure 3) (55). Like professional
phagocytes, S1 tubules exhibited autoprotection that was in
part mediated by upregulation of antioxidant and cytopro-
tective pathways (67). As such, S1 segment acts as the “sen-
sor” and “sink” of endotoxin in the filtrate and can initiate
signaling to adjacent segments, such as S2 and S3. How-
ever, with large endotoxin exposures, this signaling mani-
fested as widespread oxidative stress in these downstream
segments. These findings indicate that S1 segments may

Figure 3. | Amodel of endotoxin-induced tubular injury. Endotoxin, released from bacteria in various molecular sizes, can be filtered through
nephrons and internalized by S1 proximal tubules through a Toll-like receptor 4–dependent mechanism. The interaction between endotoxin
and S1 can result in oxidative stress and injury in downstream tubular segments. Yellow lightning bolts represent signaling molecules released
by macrophages or S1 cells after interacting with endotoxin.
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play a sentinel role similar to macrophages and could be
considered as an epithelial macrophage, or “epiphage.”
Besides generating inflammation, phagocytosis is another

hallmark of mononuclear phagocytes. Ichimura et al. dem-
onstrated that kidney injury molecule-1, a proximal tubule
injury marker, is a phosphatidylserine receptor and as such
can function as a scavenger receptor (68). Therefore, during
tubular injury, proximal tubular cells are transformed into
“semiprofessional phagocytes” (68). This further illustrates
the principle of shared functions between epithelial cells and
professional innate immunity. Furthermore, MHC II and
costimulatory proteins can be expressed on proximal tubules
after various stimuli, and some data even suggest that prox-
imal tubules could present antigens to T cells (69–76). Distal
tubules also express PRRs and participate in local immune
responses (77–80). One important difference remains between
epithelial cells and professional innate immunity: mobility.
Renal epithelial cells do not typically translocate. Therefore,
epithelial cells alone will not be able to accomplish higher
levels of immune activities (such as remote information trans-
fer) unless they are supported by immune cells. Ultimately,
epithelial cells and immune cells are both essential in shap-
ing renal immunity. With advances in multiplexed, single-cell
technologies and ever-increasing genetic tools (81–83), we an-
ticipate that many exciting discoveries will be made at the
cellular and molecular levels and will elucidate the mecha-
nisms of epithelial cell–immune cell communication.
We have discussed recent advances in our understand-

ing of renal innate immunity with special emphasis on renal

epithelial cells. However, this epithelial cell–centric view
should not preclude the contribution of other nonimmune
cells to overall renal innate immunity. For example, there
is a wealth of literature suggesting that certain types of glo-
merular injury are mediated by PRRs expressed on podo-
cytes (84). It is proposed that proinflammatory cytokines
generated from glomeruli could spread inflammation along
the tubules through peritubular capillaries (85). Heightened
PRR activation in the endothelium is another important
source of inflammation (86,87), while properly activated en-
dothelium is critical for mobilizing immune cells and clear-
ing microbes (88). We also point out that because of the
sentinel nature of innate immunity, studies have primarily
focused on acute pathologic changes rather than long-term
consequences of PRR activation, such as its role in fibrosis
(89–91). From a clinical perspective, several kidney diseases
have been linked to deregulated innate immunity and in-
flammation (Table 2) (92–94). For example, Mulay et al. dem-
onstrated that tubular injury from calcium oxalate crystals is
triggered by NLRP3 inflammasome in renal mononuclear
phagocytes (95). In both human IgA nephropathy and an
animal model of IgA nephropathy, recent genome-wide as-
sociation studies identified susceptibility polymorphisms
involved in innate immunity and inflammation (96,97). In
fact, a more recent investigation of gene expression variants
by expression quantitative trait loci analysis revealed a high
degree of overlap between SNPs important in regulation of
innate immunity and those associated with renal disease
phenotypes (98).

Table 2. Kidney diseases and innate immunity

Disease or Condition Molecules Involved Comments Reference

IgA nephropathy Defensin, TNFSF13 Human, GWAS 96
TLR9, MyD88 Murine (ddYa), GWAS 97

Diabetic nephropathy TLR4 Human 93
Kidney transplant TLR4, CD14, TLR3 Human, polymorphisms 61,102–105

MyD88 Murine 106
Renal diseaseb LPS-stimulated molecules Human 98
GN TLR4, TLR2 Murine (TSLP/FcƳRIIb

a,
nephrotoxic serum)

84,107,108

Hepatitis C–associated
GN

TLR3 Human 109

Lupus nephritis MyD88, TLR7, TLR9 Murine (MRL/lpra) 110–112
Nephrocalcinosis NLRP3 Murine (calcium oxalate

crystals)
95

Cisplatin nephrotoxicity TLR4 Murine 59
Urinary obstruction TLR4 Murine 90
Polycystic kidney
disease

CD14 Murine (cpka) 113

Urinary tract infection TLR4, TRIF, SIGIRR Human 114
TLR4, TLR5, TLR11 Murine (E-coli) 77,78,115–118

Proteinuria CD80, TLR4 Murine (LPS) 119
Sepsis-induced AKI TLR4, TLR2, TLR9, MyD88 Murine (LPS, CLP) 57,120–123
Ischemia-reperfusion
injury

TLR4, TLR2,CD14,NLRP3,
Nod1, Nod2

Murine 53,56,58,60,86,94,124–127

TNFS13, TNF ligand superfamily member 13; GWAS, genome-wide association study; MyD88, myeloid differentiation primary re-
sponse gene 88; eQTL, expression quantitative trait loci; NLRP3, NOD-like receptor family, pyrin-domain-containing 3; SIGIRR, single
immunoglobulin IL-1-related receptor; CLP, cecal ligation and puncture.
aAnimal models for the indicated diseases.
b Enrichment of eQTL by GWAS ontology category “renal disease”.
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We address now the more complex issue about the tran-
sition from innate to adaptive immunity. Indeed, a full innate
immune response is expected to culminate in the maturation
of antigen-presenting cells and the triggering of adaptive im-
munity. An important question therefore relates to the equi-
valence of DAMPs and PAMPs in that regard. That is, are
DAMPs capable of eliciting a full innate immune response
beyond causing local inflammation through their interac-
tions with PRRs? A recent study by Oberbarnscheidt et al.
suggests that this might not be the case. Indeed, these au-
thors showed that DAMPs released from ischemic injury to
syngeneic grafts were not sufficient to cause full antigen-
presenting cell maturation and adaptive immunity. Con-
versely, an allogeneic graft, similarly subjected to ischemic
injury, did trigger a full innate immune response and acti-
vated adaptive immunity. This suggested that, beyond
DAMPs, innate immune cells could also be sensing alloge-
neic nonself (allorecognition), a property previously
thought to exist only in adaptive immune cells. The au-
thors proposed that it was the recognition of allogeneic
nonself rather than DAMPs that linked innate immunity
to adaptive immunity and thus offered a unification of
alloimmunity with the Janeway model of microbial immu-
nity. This latter states that recognition of nonself is at the
heart of all immune responses (99).

Concluding Remarks
Innate immunity is a highly sophisticated system regu-

lated through PRRs. It is remarkable how far the landscape
of innate immunity has changed since Charles Janeway
predicted the existence of PRRs in 1989 (100). The discov-
ery of TLRs and other PRRs has also transformed our un-
derstanding of the kidney in health and disease. In this
review, we have highlighted the shared functions between
renal epithelial cells and professional immune cells. We dis-
cussed both the deleterious and beneficial aspects of renal
epithelial TLRs. Furthermore, TLRs expressed in other non-
immune cells are also an integral component of the regional
immunity. As exemplified by the recent failures of TLR4
inhibitor clinical trials, the path to tame the highly sophis-
ticated innate immune system remains challenging. Perhaps
progress is also needed in understanding and modifying
the “tissue response” to the immune system. In that regard,
the phenomenon of endotoxin tolerance following precon-
ditioning might offer insights into novel mechanisms of
protective adaptation. Indeed, it is now recognized that
preconditioning results in tissue protection along with a
preserved capacity to fight and contain infections. The mech-
anisms involved in endotoxin preconditioning could in turn
be targeted selectively or globally to enhance tissue protec-
tion in the face of an exaggerated innate immune response
(42–44,101). These are indeed exciting times for the renal
research community.
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